Giáo án Hình học Lớp 10 - Chương trình cả năm - Năm học 2018-2019 (Sách Phát triển năng lực)

Giáo án Hình học Lớp 10 - Chương trình cả năm - Năm học 2018-2019 (Sách Phát triển năng lực)

I. MỤC TIÊU:

1. Kiến thức:

Hiểu được cách xác định tổng, hiệu hai véc tơ, quy tắc ba điểm, quy tắc hình bình hành, quy tắc trừ, các tính chất trung điểm, tính chất trọng tâm.

Nhận biết được khái niệm và tính chất véc tơ tổng, véc tơ hiệu.

2. Kỹ năng.

Xác định vectơ tổng của hai vectơ theo định nghĩa và quy tắc hình bình hành

Vận dụng quy tắc ba điểm, quy tắc trừ, quy tắc hình bình hành, tính chất trung điểm và trọng tâm để chứng minh các đẳng thức véc tơ và giải một số bài toán đơn giản.

3.Thái độ .

Hứng thú, tích cực tham gia hình thành kiến thức mới.

Giáo dục cho học sinh tính cẩn thận,chính xác

4. Định hướng năng lực được hình thành:

Biết quy lạ về quen, tư duy các vấn đề toán học một cách lo gic

II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:

1. Giáo viên. Giáo án, sách giáo khoa, sách tham khảo, hình vẽ, phiếu câu hỏi.

2. Học sinh. Ôn lại bài cũ, làm các bài tập trong sgk, xem bài mới ở nhà theo sự hướng dẫn của giáo viên.

III. CHUỖI CÁC HOẠT ĐỘNG HỌC :

1.Hoạt động tiếp cận bài học:

 

doc 73 trang yunqn234 5530
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Hình học Lớp 10 - Chương trình cả năm - Năm học 2018-2019 (Sách Phát triển năng lực)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Chương I: VECTƠ 
Ngày soạn: 1/9/2018 Tiết dạy: 1 -2.	Bài 1: CÁC ĐỊNH NGHĨA 
I. MỤC TIÊU:
1. Kiến thức: 	
Nắm được định nghĩa vectơ và những khái niệm quan trọng liên quan đến vectơ như: sự cùng phương của hai vectơ, độ dài của vectơ, hai vectơ bằng nhau, 
Hiểu được vectơ là một vectơ đạc biệt và những qui ước về vectơ .
2. Kĩ năng: 
Biết chứng minh hai vectơ bằng nhau, biết dựng một vectơ bằng vectơ cho trước và có điểm đầu cho trước.
3. Thái độ: 
Rèn luyện óc quan sát, phân biệt được các đối tượng.
4. Định hướng năng lực được hình thành:
Biết quy lạ về quen, tư duy các vấn đề toán học một cách lo gic
II. CHUẨN BỊ:
	Giáo viên: Giáo án, phiếu học tập.
	Học sinh: SGK, vở ghi. Đọc trước bài học.
III. CHUỖI CÁC HOẠT ĐỘNG HỌC :
	1.Hoạt động tiếp cận bài học: 
· Cho HS quan sát hình 1.1. Nhận xét về hướng chuyển động của ôtô và máy bay. 
 Hình 1.1
2. Hoạt động hình thành kiến thức bài học.
2.1. Định nghĩa vectơ.
a) Tiếp cận.
- Cho đoạn thẳng AB. Nếu ta chọn điểm A là điểm đầu, điểm B là điểm cuối thì đoạn thẳng AB có hướng từ A đến B. Khi đó ta nói AB là đoạn thẳng có hướng. Từ đó hình thành khái niệm vectơ.
b) Hình thành
I. Khái niệm vectơ
ĐN: Vectơ là một đoạn thẳng có hướng.
· có điểm đầu là A, điểm cuối là B.
· Vectơ còn được kí hiệu là , 
c) Củng cố: 
H1. Với 2 điểm A, B phân biệt có bao nhiêu vectơ có điểm đầu và điểm cuối là A hoặc B?
2.2. Vectơ cùng phương, vectơ cùng hướng.
a) Tiếp cận.
· Cho HS quan sát hình 1.3. Nhận xét về giá của các vectơ
H1. Hãy chỉ ra giá của các vectơ: , ?
H2. Nhận xét về VTTĐ của các giá của các cặp vectơ: 
a) 
b) 
c) ?
b) Hình thành
· Đường thẳng đi qua điểm đầu và điểm cuối của một vectơ đgl giá của vectơ đó.
ĐN: Hai vectơ đgl cùng phương nếu giá của chúng song song hoặc trùng nhau.
· Hai vectơ cùng phương thì có thể cùng hướng hoặc ngược hướng.
· Ba điểm phân biệt A, B, C thẳng hàng Û cùng phương.
c) Củng cố: 
· Nhấn mạnh các khái niệm: vectơ, hai vectơ phương, hai vectơ cùng hướng.
Ví dụ 1: Cho hbh ABCD. Chỉ ra các cặp vectơ cùng phương, cùng hướng, ngược hướng?
Ví dụ 2: Cho hai vectơ cùng phương với nhau. Hãy chọn câu trả lời đúng:
A. cùng hướng với 
B. A, B, C, D thẳng hàng
C. cùng phương với 
D. cùng phương với 
2.3. Hai vectơ bằng nhau:
a) Tiếp cận.
GV giới thiệu khái niệm hai vectơ bằng nhau.
b) Hình thành
Hai vectơ bằng nhau: Hai vectơ đgl bằng nhau nếu chúng cùng hướng và có cùng độ dài, kí hiệu .
Chú ý: Cho , O. $ ! A sao cho .
c) Củng cố: 
Ví dụ 1. Cho hbh ABCD. Chỉ ra các cặp vectơ bằng nhau?
Ví dụ 2. Cho DABC đều. ?
Ví dụ 3. Gọi O là tâm của hình lục giác đều ABCDEF. 
1) Hãy chỉ ra các vectơ bằng , , ?
2) Đẳng thức nào sau đây là đúng?
a) b) 
c) d) 
2.4. Vectơ – không :
a) Tiếp cận.
- Vectơ có điểm đầu là A và điểm cuối cũng là A là vectơ gì ?
b) Hình thành
· Vectơ – không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu .
· , "A.
· cùng phương, cùng hướng với mọi vectơ.
· = 0.
· A º B Û .
 c) Củng cố: 
- Nhắc lại khái niệm vectơ – không và các tính chất của vectơ – không. 
3. Luyện tập
1. Cho ngũ giác ABCDE. Số các vectơ khác có điểm đầu và điểm cuối là các đỉnh của ngũ giác bằng:
a) 25	b) 20	c) 16	d) 10
2. Cho lục giác đều ABCDEF, tâm O. Số các vectơ, khác , cùng phương (cùng hướng) với có điểm đầu và điểm cuối là các đỉnh của lục giác bằng:
a) 5	b) 6 	c) 7	d) 8
3. Cho 2 vectơ đều khác . Các khẳng định sau đúng hay sai?
a) Nếu cùng phương với thì cùng phương.
b) Nếu cùng ngược hướng với thì cùng hướng.
4. Cho tứ giác ABCD có . Tứ giác ABCD là:
a) Hình bình hành	b) Hình chữ nhật
c) Hình thoi	d) Hình vuông
5. Cho tứ giác ABCD. Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi .
6. Cho DABC. Hãy dựng điểm D để:
a) ABCD là hình bình hành.	b) ABDC là hình bình hành.
7. Cho hình bình hành ABCD , tâm O. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Kể tên hai vectơ cùng phương với , hai vectơ cùng hướng với , hai vectơ ngược hướng với .
b) Chỉ ra một vectơ bằng vectơ và một vectơ bằng vectơ .
8. Cho lục giác đều ABCDEF có tâm O.
a) Tìm các vectơ khác và cùng phương với (khác)
b) Tìm các vectơ bằng 
9. Cho tứ giác ABCD. Gọi M, N, P và Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA. Chứng minh: và 
4. Mở rộng:
Câu 1. Cho có trực tâm , là điểm đối xứng với qua tâm của đường tròn ngoại tiếp . Khẳng định nào sau đây là đúng?
A. .	B. .
C..	D. .
Câu 2. Cho hình thoi có góc bằng , cạnh . Độ dài của vectơ là
A..	B. cm.
C. cm.	D. cm.
Chương I: VECTƠ 
Ngày soạn: 16/9/2018 Tiết dạy: 3 - 4 – 5.	Bài 2: TỔNG VÀ HIỆU CỦA HAI VECTƠ 
I. MỤC TIÊU: 
1. Kiến thức:
Hiểu được cách xác định tổng, hiệu hai véc tơ, quy tắc ba điểm, quy tắc hình bình hành, quy tắc trừ, các tính chất trung điểm, tính chất trọng tâm.
Nhận biết được khái niệm và tính chất véc tơ tổng, véc tơ hiệu.	
2. Kỹ năng. 
Xác định vectơ tổng của hai vectơ theo định nghĩa và quy tắc hình bình hành
Vận dụng quy tắc ba điểm, quy tắc trừ, quy tắc hình bình hành, tính chất trung điểm và trọng tâm để chứng minh các đẳng thức véc tơ và giải một số bài toán đơn giản.
3.Thái độ .
Hứng thú, tích cực tham gia hình thành kiến thức mới.
Giáo dục cho học sinh tính cẩn thận,chính xác	 
4. Định hướng năng lực được hình thành:
Biết quy lạ về quen, tư duy các vấn đề toán học một cách lo gic
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
1. Giáo viên. Giáo án, sách giáo khoa, sách tham khảo, hình vẽ, phiếu câu hỏi.....
2. Học sinh. Ôn lại bài cũ, làm các bài tập trong sgk, xem bài mới ở nhà theo sự hướng dẫn của giáo viên.
III. CHUỖI CÁC HOẠT ĐỘNG HỌC :
1.Hoạt động tiếp cận bài học: 
Xà lan
Xà lan đi theo hướng nào?
Gầu được nâng lên theo hướng nào ?
 Để trả lời các câu hỏi trên chúng ta cần phải biết cách xác định tổng của hai véc tơ.Tương tự trong các số thì trong véc tơ cũng có các phép toán tìm tổng(phép cộng), hiệu (phép trừ) 
2. Hoạt động hình thành kiến thức bài học.
2.1. Tổng của hai véc tơ.
a) Tiếp cận.
+) Nhắc lại khái niệm hai véc tơ bằng nhau?
+) Cho hai véc tơ và . Từ điểm A hãy dựng các véc tơ và ? 
b) Hình thành
Định nghĩa. Cho 2 vectơ và . Lấy điểm A tùy ý, vẽ và . 
Vectơ được gọi là tổng của hai vectơ và . Kí hiệu là: . 
a) , b) , 
c) 
 Vậy 
c) Củng cố: 
Ví dụ 1: Cho 3 điểm M, N, P. Điền vào dấu “ ” 
a) b) c)
Từ định nghĩa phép cộng véc tơ và ví dụ trên với 3 điểm A, B, C bất kỳ ta có các đẳng thức véc tơ nào?
Qui tắc ba điểm: 
Với ba điểm A, B, C bất kỳ ta có:	
Ví dụ 2: Cho hình bình hành ABCD. 
Tìm 
 Qui tắc hình bình hành: 
Cho hình bình hành ABCD ta có: 
Ví dụ 3: Cho hình bình hành ABCD. Điền vào dấu “ ”
a) 
b) 
c) 
a), b), c) đúng ; d) sai.
Chọn đáp án D.
Ví dụ 4: Cho 4 điểm M, N, P, Q bất kỳ. Trong các mệnh đề sau có bao nhiêu mệnh đề đúng?
a) 
b) 
c) 
d) 
A. 0	B. 1	C. 2	D. 3
* Tính chất: ta có:
• (t/c giao hoán)
• (t/c của vectơ-không)
• (t/c kết hợp)
2.2. Hiệu của hai véc tơ.
a) Tiếp cận.
Ta đã biết cách tìm tổng của hai véc tơ, vậy đối với hiệu của hai véc tơ sẽ được xác định như thế nào?
Cùng độ dài và ngược hướng.
b) Hình thành.
2.2.1. Véc tơ đối: 
a) Tiếp cận.
Cho hình bình hành ABCD.
Có nhận xét về các cặp véc tơ
 và, và?
b) Hình thành kiến thức 
Định nghĩa: +) Cho véc tơ , véc tơ cùng đô dài và ngược hướng với được gọi là véc tơ đối của . Kí hiệu 
+) Véc tơ đối của là .
* Mọi véc tơ đều có véc tơ đối.
 c) Củng cố: 
a) d) đúng
b) c) sai
 Ví dụ: Xét tính đúng sai của các mệnh đề sau: 
a) =
b) Nếu I là trung điểm của đoạn thẳng AB thì là véc tơ đối của 
c) Nếu I là điểm thuộc đoạn thẳng AB thì là véc tơ đối của 
d) là véc tơ đối của 
 2.2.2. Hiệu của hai véc tơ 
 a) Tiếp cận: Hiệu của hai véc tơ được định nghĩa thông qua tổng của hai véc tơ
 b) Hình thành kiến thức
 Định nghĩa: Cho 2 vectơ và . Ta gọi hiệu của hai vectơ và là vectơ , 
kí hiệu là . Như vậy : 
 c. Củng cố: 
1. Tìm: a) b) 
 * Quy tắc:
 +) (Quy tắc trừ)
 +) Quy tắc phân tích một véc tơ thành hiệu hai véc tơ 
 3. Luyện tập
3.1. Cho ba điểm A,B,C bất kỳ. Mệnh đề nào sau đây đúng?
A.
B. 
C. 
D.
a)
 b) c) d) e) f) g) AC= BD ABCD là hình chữ nhật
Gợi ý: Sử dụng các quy tắc 3 điểm và quy tắc trừ. 
3.2. Cho hình bình hành ABCD tâm O. 
Hãy điền vào chỗ “ ” để được đẳng thức đúng .
a) b) 
c) ... d) 
e) 
f) 
 g) thì tứ giác ABCD là 
 a) a b) 
3.3. Cho DABC đều cạnh a. Tính:
a). 
 b) 
4. Vận dụng:
4.1.Cho ba lựccùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của,đều là 100N và.Tìm cường độ và hướng lực?
Gợi ý : 
4.2. Một chiếc đèn được treo vào tường nhờ một dây AB. Muốn cho đèn ở xa tường, người ta dùng một thanh chống nằm ngang, một đầu tì vào tường, còn đầu kia tì vào điểm B của dây như hình vẽ bên. Cho biết đèn nặng 4(kg) và dây hợp với tường một góc . Tính lực căng của dây và phản lực của thanh. Cho biết phản lực của thanh có phương dọc theo thanh và lấy 
4.3. Một người nhảy dù có trọng lượng 900N. Lúc vừa nhảy ra khỏi máy bay, người đó chịu tác dụng của lực cản không khí, lực này gồm thành phần thẳng đứng bằng 500N và thành phần nằm ngang 300N. Tính độ lớn và phương của hợp lực của tất cả các lực.
5. Mở rộng:
5.1.Cho hai véc tơ . Trong trường hợp nào thì đẳng thức sau đúng: 
a) .
b) 
c) 
5.2. Tại sao thuyền buồm chạy ngược chiều gió?
Ngày soạn: 7/10/2018 Tiết 7-8 	 Bài 3: TÍCH CỦA VECTƠ VỚI MỘT SỐ 
I. Mục tiêu của bài: 
Kiến thức:
- Hiểu được định nghĩa tích véc tơ với một số.
- Biết các tính chất của tích véc tơ với một số: Với mọi véc tơ và một số thực h, k ta có:
1) h(k
2) 
3) 
- Hiểu được tính chất trung điểm của đoạn thẳng, trọng tâm của tam giác.
- Biết được điều kiện để hai véc tơ cùng phương, ba điểm thẳng hàng.
- Biết định lý biểu thị một véc tơ theo hai véc tơ không cùng phương. 
Kỹ năng: 
- Xác định được véc tơ khi cho trước một số thực k và véc tơ 
- Biết diễn đạt bằng véc tơ về ba điểm thẳng hàng, trung điểm của một đoạn thẳng, trọng tâm của một tam giác, hai điểm trùng nhau để giải một số bài toán hình học.
- Sử dụng được tính chất trung điểm của đoạn thẳng, trọng tâm của tam giác để giải một số bài toán hình học.
Thái độ:
- Rèn luyện tư duy lôgic, trí tưởng tượng trong không gian và biết quy lạ về quen.
- Khả năng tư duy và suy luận cho học sinh.
- Cẩn thận, chính xác trong tính toán và lập luận.
- Rèn luyện cho học sinh tính kiên trì, khả năng sáng tạo và cách nhìn nhận một vấn đề.
Đinh hướng phát triển năng lực:
(Năng lực tự học, năng lực hợp tác, năng lực giao tiếp, năng lực quan sát, năng lực phát hiện và giải quyết vấn đề, năng lực tính toán, năng lực vận dụng kiến thức vào cuộc sống ...)
Vận dụng linh hoạt các phương pháp dạy học nhằm giúp học sinh chủ động, tích cực trong phát hiện, chiếm lĩnh tri thức, trong đó phương pháp chính là: nêu vấn đề, đàm thoại, gởi mở vấn đề và giải quyết vấn đề.
II. Chuẩn bị của giáo viên và học sinh
1. Giáo viên:
- Giáo án, bảng phụ có ghi các hoạt động, máy tính, máy chiếu.
2. Học sinh:
- Soạn bài trước ở nhà và tham gia các hoạt động trên lớp.
III. Chuỗi các hoạt động học
 1. GIỚI THIỆU (HOẠT ĐỘNG TIẾP CẬN BÀI HỌC) (3ph)
- Giáo viên chiếu hình ảnh (bên dưới) và nêu câu hỏi: Có nhận xét gì về phương, chiều, độ dài của các cặp vectơ trên? 
- Dựa vào câu trả lời của học sinh, giáo viên vào bài học.
 2. NỘI DUNG BÀI HỌC (HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC)
	2.1 Đơn vị kiến thức 1: Định nghĩa tích của véc tơ với một số (12’)
	a) Tiếp cận (khởi động): 
 Từ kết quả của hoạt động vào bài ta định hướng cho học sinh viết , . 
b) Hình thành:
Tổng quát vào định nghĩa: “Cho số k khác 0 và véc tơ . Tích của véctơ với số k là một véctơ, kí hiệu k, cùng hướng với véctơ nếu k , ngược hướng với véctơ nếu k và có độ dài bằng .”
	c) Củng cố: 
Ví dụ: Cho tam giác ABC với trọng tâm G. Gọi D, E lần lượt là trung điểm của BC, AC. Khi đó , , .
2.2 Đơn vị kiến thức 2: Tính chất (10’)
a) Tiếp cận (khởi động): 
- Giáo viên chuẩn bị bảng phụ: Với a, b, h, k là các số thực bất kì thì:
b) Hình thành:
- Nếu thay a thành , b thành thì các kết quả trên chính là tính chất của tích của vectơ với một số.	
“ Với hai vectơ và bất kì, với mọi số h và k ta có:
, ”
c) Củng cố: Ví dụ: Tìm vectơ đối của các vectơ , 3.
2.3 Đơn vị kiến thức 3: Trung điểm của đoạn thẳng và trọng tâm của tam giác (10’)
a) Tiếp cận (khởi động):
- Hoạt động nhóm:
Nhóm 1: Gọi I là trung điểm của đoạn thẳng AB, M là điểm bất kì. Tính theo .
Nhóm 2: Gọi G là trọng tâm của tam giác ABC, M là điểm bất kì. Tính theo .
b) Hình thành:
- GV theo dõi hoạt động nhóm của học sinh, sau đó đưa ra kết quả:
a) “ Nếu I là trung điểm của đoạn thẳng AB thì với mọi điểm M bất kì ta có = .”
b) Nếu G là trọng tâm của tam giác ABC thì với mọi điểm M bất kì ta có = .”
2.4 Đơn vị kiến thức 4: Điều kiện để hai vectơ cùng phương (10’)
a) Tiếp cận 1 (khởi động):
- Quay lại hình vẽ ở hoạt động dẫn vào bài học, gv khẳng định một lần nữa không cùng phương nên không tồn tại k để . 
b) Hình thành 1:
Vậy, “điều kiện cần và đủ để hai vectơ và cùng phương là có một số k để .”
c) Tiếp cận 2 (khởi động):
- GV đặt vấn đề: Cho ba điểm phân biệt A, B, C thẳng hàng. Hãy nhận xét . 
d) Hình thành 2:
Từ đó, gv đưa ra nhận xét: “Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số k khác 0 để .”
2.5 Đơn vị kiến thức 5: Phân tích một vectơ theo hai vectơ không cùng phương (30’) 
a) Tiếp cận (khởi động):
- Cho là hai vectơ không cùng phương và là một vectơ tùy ý. Kẻ CA’// OB, CB’ // OA. Khi đó được biểu thị theo như thế nào? (GV có thể dẫn dắt để học sinh phát hiện kết quả ). Ta nói được phân tích theo hai vectơ không cùng phương .
AÙ
C
b) Hình thành :
- Từ hoạt động tiếp cận ở trên, gv tổng kết thành một mệnh đề: “ Cho hai vectơ không cùng phương . Khi đó mọi vectơ đều phân tích được một cách duy nhất theo hai vectơ nghĩa là có duy nhất cặp số h, k sao cho .”
c) Củng cố:
- Bài toán: Cho tam giác ABC với trọng tâm G. Gọi I là trung điểm của đoạn AG và K là điểm trên cạnh AB sao cho AK . 
a) Hãy phân tích , theo 
b) Chứng minh ba điểm C, I, K thẳng hàng.
3. LUYỆN TẬP (40ph)
3.1. Bài tập tự luận:
Giáo viên định hướng cách giải, yêu cầu học sinh lên bảng trình bày, chính xác hóa. 
Bài 1: Cho hình chữ nhật ABCD. Xác định: 
a) Điểm M sao cho 
b) Điểm N sao cho 
Bài 2: Cho tam giác ABC, D và E lần lượt là trung điểm của BC và AC. Điền đúng, sai vào các câu sau:
a) 	b) c) 	d) 
3. 2. Bài tập trắc nghiệm:
Chia lớp thành 3 nhóm, mỗi nhóm 2 bài
Thời gian hoạt động nhóm tối thiểu 10 phút. 
Bài 1: Cho tam giác ABC với trọng tâm G và I là trung điểm của đoạn BC. Tìm khẳng định đúng trong các khẳng định sau.
Bài 2: Cho tam giác ABC và tam giác A’B’C’ có cùng trọng tâm. Tìm khẳng định đúng trong các trong các khẳng định sau. 
Bài 3: Cho tam giác ABC vuông cân có AB = AC = a. Tính độ dài của tổng hai véctơ và .
A. a	B. 	C. 	D. a
Bài 4: Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của các đoạn thẳng AB và CD. Tìm khẳng định sai trong các khẳng định sau.
A. 	B. C. 	D. 
Bài 5: Cho G là trọng tâm của tam giác ABC, đặt , . Tìm khẳng định sai trong các khẳng định sau.
A. 	B. C. 	D. 
Bài 6: Cho M là trung điểm của đoạn thẳng AB. Tìm khẳng định đúng trong các khẳng định sau.
A. 	B. 	C. 	
D. Mọi điểm C thuộc đường thẳng đi qua M và vuông góc với AB , ta luôn có 
Đáp án: 1C, 2B, 3A, 4A, 5C, 6C
 4. MỞ RỘNG
Bài tập mở rộng: 
1. Cho tứ giác lồi ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh hai tam giác ANP và CMQ có cùng trọng tâm.
2. Cho tam giác ABC, lấy các điểm I, J thỏa mãn , . Chứng minh IJ đi qua trọng tâm G của tam giác ABC.
Ngày soạn: 28/10/2018 Tiết dạy: 9 - 10 -11	Bài 4: HỆ TRỤC TOẠ ĐỘ 
I. MỤC TIÊU:
1. Kiến thức: 	
Nắm được định nghĩa và các tính chất về toạ độ của vectơ và của điểm.
2. Kĩ năng: 
Biết biểu diễn các điểm và các vectơ bằng các cặp số trong hệ trục toạ độ đã cho.
Biết tìm toạ độ các vectơ tổng, hiệu, tích một số với một vectơ.
Biết sử dụng công thức toạ độ trung điểm của đoạn thẳng và toạ độ trọng tâm tam giác.
3. Thái độ: 
Rèn luyện tính cẩn thận, chính xác.
Gắn kiến thức đã học vào thực tế.
4. Đinh hướng phát triển năng lực:
(Năng lực tự học, năng lực hợp tác, năng lực giao tiếp, năng lực quan sát, năng lực phát hiện và giải quyết vấn đề, năng lực tính toán, năng lực vận dụng kiến thức vào cuộc sống ...)
- Vận dụng linh hoạt các phương pháp dạy học nhằm giúp học sinh chủ động, tích cực trong phát hiện, chiếm lĩnh tri thức, trong đó phương pháp chính là: nêu vấn đề, đàm thoại, gởi mở vấn đề và giải quyết vấn đề.
II. CHUẨN BỊ:
	Giáo viên: Giáo án. Hình vẽ minh hoạ.
	Học sinh: SGK, vở ghi. Ôn tập kiến thức vectơ đã học.
III. Chuỗi các hoạt động học
GIỚI THIỆU (HOẠT ĐỘNG TIẾP CẬN BÀI HỌC) (3ph)
· Cho HS quan sát các hình ảnh sau và trả lời các câu hỏi sau:
 Với mỗi cặp số chỉ kinh độ và vĩ độ người ta xác định được mấy điểm trên Trái Đất ?
 Hãy tìm cách xác định vị trí quân mã trên bàn cờ vua.
2. NỘI DUNG BÀI HỌC (HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC)
2.1 Đơn vị kiến thức 1: Trục và độ dài đại số trên trục (12’)
a) Tiếp cận (khởi động): 
· GV giới thiệu trục toạ độ, toạ độ của điểm trên trục, độ dài đại số của vectơ trên trục.
b) Hình thành:
1. Trục và độ dài đại số trên trục
a) Trục toạ độ (O;)
b) Toạ độ của điểm trên trục: Cho M trên trục (O;). 	
k là toạ độ của MÛ
c) Độ dài đại số của vectơ: Cho A, B trên trục (O;). 
	a = Û 
· Nhận xét:
+ cùng hướng Û>0
+ngược hướng Û<0
+ Nếu A(a), B(b) thì =b–a
+ AB = 
+ Nếu A(a), B(b), I là trung điểm của AB thì 
c) Củng cố: 
1. Cho trục (O;) và các điểm A, B, C như hình vẽ. Xác định toạ độ các điểm A, B, C, O.
2. Cho trục (O;). Xác định các điểm M(–1), N(3), P(–3).
3. Tính độ dài đoạn thẳng MN và nêu nhận xét?
4. Xác định toạ độ trung điểm I của MN?
2.2 Đơn vị kiến thức 2: Hệ trục tọa độ (10’)
a) Tiếp cận (khởi động): 
Từ hoạt động tiếp cận bài học ở III.1 (giới thiệu) Hình thành định nghĩa hệ trục tọa độ.
Hãy phân tích các vectơ theo hai vectơ trong hình. Từ đó hình thành kiến thức tọa độ của vectơ và tọa độ của một điểm.
b) Hình thành:
2. Hệ trục toạ độ
a) Định nghĩa: 
· Hệ trục toạ độ 
· O : gốc toạ độ
· Trục : trục hoành Ox
· Trục : trục tung Oy
· là các vectơ đơn vị 
· Hệ còn kí hiệu Oxy
· Mặt phẳng toạ độ Oxy.
b) Toạ độ của vectơ
 = (x; y) Û 
· Cho = (x; y), = (x¢; y¢)
 Û 
· Mỗi vectơ được hoàn toàn xác định khi biết toạ độ của nó
· 
c) Toạ độ của điểm
M(x; y) Û = (x; y)
· Nếu MM1 ^ Ox, MM2 ^ Oy thì x = , y = 
· Nếu M Î Ox thì yM = 0
 M Î Oy thì xM = 0
d) Liên hệ giữa toạ độ của điểm và vectơ trong mặt phẳng 
Cho A(xA; yA), B(xB; yB).
 = (xB – xA; yB – yA)
c) Củng cố:
1. Cho A(3;5) và B(-2;-1). Tìm tọa độ của vectơ .
2. a. Xác định tọa độ các điểm A, B, C như hình vẽ?
b. Vẽ các điểm D(–2; 3), E(0; –4), F(3; 0)?
c. Xác định tọa độ các vectơ ?
2.3 Đơn vị kiến thức 3: Toạ độ của các vectơ (10’)
a) Tiếp cận (khởi động): 
Giáo viên giới thiệu các công thức toạ độ của các vectơ .
b) Hình thành:
3. Toạ độ của các vectơ 
 Cho =(u1; u2), =(v1; v2).
 = (u1+ v1 ; u2+v2)
 = (u1– v1 ; u2–v2)
 k= (ku1; ku2), k Î R
Nhận xét: Hai vectơ =(u1; u2), =(v1; v2) với ≠ cùng phương Û $k Î R sao cho:
c) Củng cố:
VD1. Cho = (1; –2), = (3; 4), = (5; –1). Tìm toạ độ của các vectơ:
a) b) 
c) d) 
VD2. Cho = (1; –1), = (2; 1). Hãy phân tích các vectơ sau theo và :
a) = (4; –1) b) = (–3; 2)
2.4 Đơn vị kiến thức 4: Toạ độ trung điểm của đoạn thẳng. Toạ độ của trọng tâm tam giác.(10’)
a) Tiếp cận (khởi động): 
Học sinh trả lời các câu hỏi sau:
1. Cho A(1;0), B(3; 0) và I là trung điểm của AB. Biểu diễn 3 điểm A, B, I trên mpOxy và suy ra toạ độ điểm I?
2. Gọi G là trọng tâm của tam giác ABC. Hãy phân tích vectơ theo ba vectơ và . Từ đó hãy tính tọa độ của G theo tọa độ của A, B và C.
b) Hình thành:
4. Toạ độ trung điểm của đoạn thẳng. Toạ độ của trọng tâm tam giác.
a) Cho A(xA; yA), B(xB; yB). I là trung điểm của AB thì:
xI = , yI = 
b) Cho DABC với A(xA; yA), B(xB; yB), C(xC; yC). G là trọng tâm của DABC thì:
c) Củng cố:
VD1: Cho tam giác ABC có A(–1;–2), B(3;2), C(4;–1).
a) Tìm toạ độ trung điểm I của BC.
b) Tìm toạ độ trọng tâm G của DABC.
c) Tìm toạ độ điểm M sao cho .
VD2: Cho DABC có A(1;2), B(–2;1) và C(3;3). Tìm tọa độ điểm:
a) Trọng tâm G của DABC.
b) D sao cho ABCD là hình bình hành.
 3. LUYỆN TẬP (40ph)
Cho hai vectơ = (2; –4), = (–5; 3). Tọa độ vectơ là :
a) (7; –7)	b) (9; –11)	c) (9; 5)	d) (–1; 5)
Cho = (3; –2) và hai điểm A(0; –3), B(1; 5). Biết , tọa độ vectơ là :
a) 	b) 	c) (–5; 12)	d) (5; –12)
Cho A(2; 5), B(1; 1), C(3; 3), một điểm E trong mặt phẳng tọa độ thỏa . Tọa độ của E là :
a) (3; –3)	b) (–3; 3)	c) (–3; –3)	d) (–2; –3)
Cho A(2; –1), B(0; 3), C(4; 2). Một điểm D có tọa độ thỏa . Tọa độ của D là:
a) (1; 12)	b) (12; 1)	c) (12; –1)	d) (–12; –1)
Cho ba vectơ = (2; 1), = (3; 4), = (7; 2). Giá trị của k, h để là :
a) k = 2,5; h = –1,3	b) k = 4,6; h = –5,1	
c) k = 4,4; h = –0,6	d) k = 3,4; h = –0,2
Cho tam giác ABC có trung điểm cạnh BC là M(1; 1) và trọng tâm tam giác là G(2; 3). Tọa độ đỉnh A của tam giác là :
a) (3; 5)	b) (4; 5)	c) (4; 7)	d) (2; 4)
Cho tam giác ABC với A(4; 0), B(2; 3), C(9; 6). Tọa độ trọng tâm G của tam giác ABC là :
a) (3; 5)	b) (5; 3)	c) (15; 9)	d) (9; 15)
Cho tam giác ABC có A(6; 1), B(–3; 5). Trọng tâm của tam giác là G(–1; 1). Tọa độ đỉnh C là:
a) (6; –3)	b) (–6; 3)	c) (–6; –3)	d) (–3; 6)
Cho A(2; –3), B(3; 4). Tọa độ của điểm M trên trục hoành sao cho A, B, M thẳng hàng là :
a) (1; 0)	b) (4; 0)	c) 	d) 
Cho = 2 và = . Xác định x sao cho và cùng phương.
a) x = –1	b) x = –	c) x = 	d) x = 2
Cho biết D thuộc đường thẳng AB với A(–1; 2), B(2; –3) và D(x; 0). Khi đó giá trị của x là :
a) –1	b) 5	c) 	d) 0
Chi A(2; 1), B(1; –3). Tọa độ giao điểm I của hai đường chéo hình bình hành OABC là :
a) 	b) 	c) (2; 6)	d) 
Trong hệ trục tọa độ Oxy cho A(1; 2), B(0; 4), C(3; –2). Tìm tọa độ điểm D sao cho ABCD là hình bình hành và tìm tọa độ tâm I của hình bình hành.
a) D(2; 0), I(4; –4)	b) D(4; –4), I(2; 0)	
c) D(4; –4), I(0; 2)	d) D(–4; 4), I(2; 0)
Cho M(–3; 1), N(1; 4), P(5; 3). Tọa độ điểm Q sao cho MNPQ là hình bình hành là :
a) (–1; 0)	b) (1; 0)	c) (0; –1)	d) (0 ;1)
Cho bốn điểm A(2; 1), B(2; –1), C(–2; 3), D(–2; –1). Xét các mệnh đề sau :
(I) ABCD là hình thoi	 
(II) ABCD là hình bình hành	 
(III) AC cắt BD tại I(0; –1)
Mệnh đề nào đúng ?
a) Chỉ (I)	b) Chỉ (II)	
c) (II) và (III)	d) (I), (II) và (III)
4. VẬN DỤNG:
- Với mỗi cặp số chỉ kinh độ và vĩ độ người ta xác định được một điểm trên Trái Đất.
- Vị trí quân mã trên bàn cờ vua.
Đó là những ứng dụng thực tiễn của hệ trục tọa độ.
5. MỞ RỘNG :
1. Cho các điểm M(–4; 1), N(2; 4), P(2; –2) lần lượt là trung điểm của các cạnh BC, CA, AB của DABC. 
a) Tính toạ độ các đỉnh của DABC.
b) Tìm toạ độ điểm D sao cho ABCD là hình bình hành.
c) CMR trọng tâm của các tam giác MNP và ABC trùng nhau.
2. Cho A(1 ; 1), B(3 ; 2) và C(m+4 ; 2m+1). Tìm m để ba điểm A, B, C thẳng hàng.
3. Trên mặt phẳng với hệ tọa độ đã chọn cho A (4;7); B (-4;7). Tìm điểm M trên đường thẳng d:y = x +1 sao cho nhỏ nhất.
M(0;1).	
B. M (-8;9).
M (4;5).	
 M (-4;3).
4. Trong mặt phẳng (Oxy) cho A (2;0). Tìm tất cả các điểm M trên đường thẳng d: x+2y-1=0 để diện tích tam giác OMA bằng 7.
M1 (-13;7);	M2 (15;-7).
M3 (-6;);	M4 (8;-).
M5 (15;-7).
M6(-13;7).
CHƯƠNG 1 VÉC TƠ
ÔN TẬP CHƯƠNG I
Ngày soạn: 18/11/2018 Tiết 12
I.MỤC TIÊU 
 1. Về kiến thức : 
- Nắm vững khái niệm tích của một vectơ với một số, các tính chất của phép cộng vectơ, phép nhân vectơ với một số.
- Nắm được điều kiện cần và đủ để hai vectơ cùng phương, biết diễn đạt bằng vectơ về ba điểm thẳng hàng, trung điểm của đoạn thẳng, trọng tâm tam giác.
 2. Về kĩ năng: 
- Xác định được toạ độ của điểm, của vectơ trên trục toạ độ.
- Biết sử dụng được biểu thức toạ độ của các phép toán vectơ. Xác định được toạ độ của trung điểm đoạn thẳng và trọng tâm tam giác.
 3. Về thái độ: - Bước đầu sử dụng biểu thức toạ độ của các phép toán vectơ, làm quen với mối liên hệ giữa vectơ và toạ độ của các bài toán, yêu cầu cẩn thận, chính xác.
 4. Định hướng năng lực được hình thành:
- Biết hệ thống hóa các kiến thức đã học.
- Biết quy lạ về quen.
II. CHUẨN BỊ:
 Giáo viên: Giáo án, phiếu học tập.
	Học sinh: SGK, vở ghi. Đọc trước bài học.
III. CHUỖI CÁC HOẠT ĐỘNG HỌC :
 1.Kiểm tra bài cũ:Trong quá trình ôn tập.
 2.Ôn tập. Nhắc lại các kiến thức cơ bản đã học trong chương 
 HĐ của GV và HS
Nội dung chính
Gv? Nêu điều kiện để DABC là hình bình hành?
Hs: DABC là hbh Û 
Gv? Nêu công thức xác định toạ độ trọng tâm tam giác?
Hs: 
Gv? , ó ?
Hs: ó 
B1. Cho DABC với A(3; 1), B(–1; 2), C(0; 4).
a) Tìm điểm D để DABC là hình bình hành.
b) Tìm trọng tâm G của DABC.
c) Tìm hai số m n sao cho:
ĐS: 
D(4; -2)
HĐ của GV và HS
Nội dung chính
Gv? Nêu điều kiện xác định điểm C?
Hs: B là trung điểm của AC.
Gv? Nêu điều kiện để 3 điểm thẳng hàng?
Hs: cùng phương.
B2.
a) Cho A(2; 3), B(–3; 4). Tìm tọa độ điểm C biết C đối xứng với A qua B.
b) Cho A(1; –2), B(4; 5), C(3m; m–1). Xác định m để A, B, C thẳng hàng.
ĐS: 
C(-8 ; 5)
 cùng phương ó 
 ó .
Gv yêu cầu học sinh thực hiện câu a,b.
Gv? Nêu cách phân tích một vectơ theo 2 vectơ không cùng phương?
Hs: Tìm các số k và h sao cho:
B3. Cho =(2; 1), = (3; –4), = (–7; 2).
a) Tìm toạ độ của:
b) Tìm toạ độ của :
c) Phân tích theo . 
 HD: 
c) Giả sử 
 + 
+ óó
B4.Cho tam giác ABC.Gọi M,N lần lượt là hai điểm lấy trên cạnh AB,AC sao cho AM = 2BM,CN = 3AN,K là trung điểm của MN. 
 Chứng minh rằng:
 HD:
Ta có , 
+ K là trung điểm MN nên 
 =
 = .
Tiết 13- KIỂM TRA 1 TIẾT CHƯƠNG I HÌNH HỌC LỚP 10
I. Mục tiêu;
 1. Kiến thức; Học sinh nắm được các định nghĩa, các phép tốn tổng, hiệu của hai véc tơ. Phép nhân vect tơ với 1 số. Các phép tốn tọa độ.
 2. Kỹ năng; Học sinh biết vận dụng các định nghĩa, các phép tốn tổng, hiệu của hai véc tơ. Phép nhân vect tơ với 1 số. Các phép tốn tọa độ vào việc giải các bài tập.
II. Thiết kế ma trận:
 MA TRẬN ĐỀ KIỂM TRA HÌNH HỌC 10
 	 Chương I: VECTƠ
Ma trận đề kiểm tra :
Chủ đề/Chuẩn KTKN
Cấp độ tư duy
Nhận biết
Thông hiểu
Vận dụng thấp
Vận dụng cao
Cộng
TN
TL
TN
TL
TN
TL
TN
TL
1. Các định nghĩa
Câu 1
Câu 11 
Câu 2
3
20%
2. Tổng, hiệu của hai véc tơ
Câu 3
Câu 4
Câu 13 
3
20%
3. Tích của vectơ với một số
Câu 5
Câu 12 
Câu 6
Câu 7
4
25%
4. Hệ tọa độ
Câu 8
Câu 9
Câu 10 
Câu 14a 
Câu 14b 
4
35%
Số câu
Phần trăm
6
(40%)
5
(30%)
3
(30%)
3
(20%)
14
100%
Cấu trúc đề:
I. Trắc nghiệm( 10 câu/ 5 điểm)
II. Tự luận
Câu 11( 1 điểm).
Câu 12( 1 điểm).
Câu 13( 1 điểm).
Câu 14( 2 điểm).
Xét duyệt của BGH	Tổ trưởng chuyên mơn
III. ĐỀ VÀ ĐÁP ÁN
TRƯỜNG THPT NGUYỄN THÁI BÌNH
TỔ: TOÁN
ĐỀ KIỂM TRA 1 TIẾT HÌNH HỌC 10 
Thời gian làm bài: 45 phút; 
Họ và tên:..................................................................................: Lớp:.................. 
Mã đề thi 001
(Thí sinh khơng được sử dụng tài liệu)
I. TRẮC NGHIỆM ( 5 ĐIỂM).
Câu 1: Cho hình vuông cạnh . Tính?
A. .	B. .	C. .	D. .
Câu 2: Hai vectơ bằng nhau khi hai vectơ đó
A. Cùng phương.	B. Cùng hướng.
C. Cùng hướng và cùng độ dài.	D. Có độ dài bằng nhau.
Câu 3: Cho hình bình hành . Trong các khẳng định sau hãy tìm khẳng định sai
A. .	B. .	C. .	D. .
Câu 4: Cho tam giác ABC và điểm M thỏa thì mệnh đề nào sau đây đúng?
A. ABCM là hình bình hành.	B. M là trung điểm của AC.
C. M là trọng tâm tam giác ABC.	D. M là trung điểm của AC.
Câu 5: Cho các điểm phân biệt . Đẳng thức nào sau đây đúng ?
A. .	B. .	C. .	D. .
Câu 6: Đẳng thức nào sau đây mô tả đúng hình vẽ bên:
A. .	B. .	C. .	D. .
Câu 7: Cho tam giác có trung tuyến và trọng tâm. Khi đó 
 A. 	B. .	C. 	D. .
Câu 8: Cho tam giác ABC, M là trung điểm AB, N là điểm thuộc cạnh AC sao cho . Gọi I, J lần lượt là trung điểm MN và BC. Khi đó 
A. .	B. .	C. .	D. .
Câu 9: Trong mặt phẳng Oxy, cho tam giác ABC có trọng tâm G(-2;3) và hai điểm A(-7;5), 
C(-2;-1). Khi đĩ tọa độ điểm B là
A. .	B. .	C. .	D. .
Câu 10: Trong mặt phẳng , cho . Tọa độ trung điểm của đoạn thẳng là:
A. .	B. .
C. .	D. .
II. TỰ LUẬN ( 5 ĐIỂM).
Câu 11. Tìm tất cả các vectơ khác vectơ có điểm đầu, điểm cuối lấy từ 3 điểm A, B, C phân biệt ?
Câu 12. Cho hình bình hành. Tính tổng các vectơ 	
Câu 13. Cho 5 điểm A, B, C, D, E. Chứng minh rằng: .
Câu 14: Trong mặt phẳng tọa độ , cho biết A(2; 3), B(3; -1), C(-1;0).
 a) Tìm toạ độ điểm D để ABCD là hình bình hành.
 b) Tìm tọa độ điểm M thuộc truc Oy để nhỏ nhất.
----------- HẾT ----------
Bài làm:
Học sinh ghi đáp án phần trắc nghiệm vào bảng sau
CÂU
1
2
3
4
5
6
7
8
9
10
ĐA
ĐÁP ÁN
ĐÁP ÁN ĐỀ 1
Câu 11. Tìm tất cả các vectơ khác vectơ có điểm đầu, điểm cuối lấy từ 3 điểm A, B, C phân biệt ?
1,0đ
ĐÁP ÁN: 
 (HS viết đúng 3 véctơ cho 0,5 điểm) 
1,0đ
Câu 12. Cho hình bình hành. Tính tổng các vectơ 
1,0đ
ĐÁP ÁN: 
0,5đ
0,25đ
0,25đ
Câu 13. Cho 5 điểm A, B, C, D, E. Chứng minh rằng: .
1,0đ
 ĐÁP ÁN: .
0,5đ
0,25đ
0,25đ
Câu 14: Trong mặt phẳng tọa độ , cho biết A(2; 3), B(3; -1), C(-1;0).
 a) Tìm toạ độ điểm D để ABCD là hình bình hành.
 b) Tìm tọa độ điểm M thuộc truc Oy để nhỏ nhất.
2đ
 ĐÁP ÁN: 
 Câu 14 a) 
0,5đ
 ABCD là hình bình hành
0,25đ
 VậyD(-2; 4)
0,25đ
 Câu 14b) 
0,25đ
 A/(-2;3) đối xứng A qua Oy 
0,25đ
0,25đ
 cùng phương. 
0,25đ
ĐÁP ÁN ĐỀ 2
Câu 11. Tìm tất cả các vectơ khác vectơ có điểm đầu, điểm cuối lấy từ 3 điểm C, D, E phân biệt ?
1,0đ
ĐÁP ÁN: 
 (HS viết đúng 3 véctơ cho 0,5 điểm) 
1,0đ
Câu 12. Cho hình bình hành. Tính tổng các vectơ 	
1,0đ
ĐÁP ÁN: 
0,5đ
0,25đ
0,25đ
Câu 13. Cho 4 điểm B, C, D, E. Chứng minh rằng: .
1,0đ
 ĐÁP ÁN: .
0,5đ
0,25đ
0,25đ
Câu 14: Trong mặt phẳng tọa độ , cho biết A(3; -1), B(2; 3), C(-1;0).
 a) Tìm toạ độ điểm D để ABCD là hình bình hành.
 b) Tìm tọa độ điểm M thuộc truc Oy để nhỏ nhất.
2đ
 ĐÁP ÁN: 
 Câu 14 a) 
0,5đ
 ABCD là hình b

Tài liệu đính kèm:

  • docgiao_an_hinh_hoc_lop_10_chuong_trinh_ca_nam_nam_hoc_2018_201.doc